In the paper New Steiner systems from old ones by paramodifications we described the possibility to modify a 2-design \(D\) by redefining the parallelism of blocks, intersecting a fixed block \(b\). This modification is called \((\chi,b)\)-paramodification.
We applied this method to construct new unitals of order 3 and 4. On this home page, we present the computational results and their implementations in the computer algebra system GAP, and its package UnitalSZ.
Define two graphs \(\Psi_3\) and \(\Psi_4\), whose vertices are all unitals of respective orders, up to isomorphism. Two vertices are connected if and only if the corresponding unitals are paramodifications of each other. We have the following known classes of unitals:
We studied the connected components of \(\Psi_3\) and \(\Psi_4\) which contain at least one vertex from the classes BBT, KRC or KNP.
See the GAP worksheet for an implementation of the paramodification method. It requires the GAP package UnitalSZ.
You may experiment with
psi3-vertex-names.g
and psi4-vertex-names.g
which identifies the GAP objects and the vertices.The computing of all paramodification of a unital of order \(q\) can be reduced to compute the proper \(q+1\)-coloring of a simple graph with \((q+1)(q^2-1)\) vertices. This can be done by the independent set cover method, or by different integer linear programs (ASS, POP, POP2). We have timed the run-time of finding all possible (non-isomorphic) \((\chi,b)\)-paramodifications of a unital (and it’s) block for 30 random unitals of order 4 (from the KNP library) and random blocks (the measurements are in milliseconds):
method | minimum | q1 | median | mean | q3 | maximum |
---|---|---|---|---|---|---|
clique | 86 | 118.50 | 145.5 | 142.2333 | 152.25 | 316 |
scip_ass | 474 | 2245.50 | 2739.0 | 3368.9333 | 3673.50 | 9804 |
scip_pop | 532 | 2111.50 | 3045.0 | 4082.1000 | 4533.50 | 12266 |
scip_pop2 | 519 | 2245.25 | 3096.5 | 4443.5667 | 5116.00 | 14707 |
Some general information (for further details see the table below):
id | compsize | knps | fullcomp | new | img.link |
---|---|---|---|---|---|
1-8-etc | 7596 | 8 | FALSE | 7588 | img |
2 | 2 | 2 | TRUE | 0 | NA |
3 | 4 | 1 | TRUE | 3 | img |
4 | 3 | 1 | TRUE | 2 | img |
5 | 2 | 1 | TRUE | 1 | img |
6-50 | 13 | 2 | TRUE | 11 | img |
7-61 | 160 | 5 | TRUE | 155 | img |
9-26 | 55 | 2 | TRUE | 53 | img |
10 | 3 | 1 | TRUE | 2 | img |
11 | 4 | 1 | TRUE | 3 | img |
12 | 5 | 1 | TRUE | 4 | img |
15 | 3 | 1 | TRUE | 2 | img |
16 | 4 | 1 | TRUE | 3 | img |
18 | 4 | 1 | TRUE | 3 | img |
19 | 5 | 1 | TRUE | 4 | img |
20 | 2 | 1 | TRUE | 1 | img |
22-58-62 | 404 | 3 | TRUE | 401 | img |
23 | 21 | 1 | TRUE | 20 | img |
24 | 44 | 1 | TRUE | 43 | img |
27 | 4 | 1 | TRUE | 3 | img |
28 | 12 | 1 | TRUE | 11 | img |
34-57 | 401 | 14 | TRUE | 387 | img |
40 | 7 | 1 | TRUE | 6 | img |
41 | 3 | 1 | TRUE | 2 | img |
42 | 8 | 1 | TRUE | 7 | img |
43 | 62 | 1 | TRUE | 61 | img |
44 | 162 | 1 | TRUE | 161 | img |
45 | 3 | 1 | TRUE | 2 | img |
47 | 5 | 1 | TRUE | 4 | img |
48 | 5 | 1 | TRUE | 4 | img |
49 | 3 | 1 | TRUE | 2 | img |
52 | 3 | 1 | TRUE | 2 | img |
53 | 9 | 1 | TRUE | 8 | img |
54 | 3 | 1 | TRUE | 2 | img |
56 | 36 | 1 | TRUE | 35 | img |
59 | 226 | 1 | TRUE | 225 | img |
60 | 5 | 1 | TRUE | 4 | img |
63 | 2 | 1 | TRUE | 1 | img |
64 | 5 | 1 | TRUE | 4 | img |
66 | 3 | 1 | TRUE | 2 | img |
67 | 3 | 1 | TRUE | 2 | img |
69 | 2 | 1 | TRUE | 1 | img |
70-1629-etc | 12887 | 6 | FALSE | 12881 | img |
341 | 2 | 1 | TRUE | 1 | img |
1420-1421-etc | 185 | 18 | TRUE | 167 | img |
1424-1429-etc | 1413 | 22 | TRUE | 1391 | img |
1425-1426-etc | 986 | 22 | TRUE | 964 | img |
1427-1476 | 10 | 2 | TRUE | 8 | img |
1428 | 3 | 2 | TRUE | 1 | img |
1430-1489-1530 | 8 | 3 | TRUE | 5 | img |
1434-1435-etc | 264 | 16 | TRUE | 248 | img |
1437-1439-1546-1548 | 19 | 4 | TRUE | 15 | img |
1444-1446-etc | 432 | 10 | TRUE | 422 | img |
1445 | 4 | 4 | TRUE | 0 | NA |
1447 | 2 | 1 | TRUE | 1 | img |
1450 | 2 | 1 | TRUE | 1 | img |
1451-1461-1471 | 8 | 3 | TRUE | 5 | img |
1456 | 2 | 1 | TRUE | 1 | img |
1459 | 3 | 1 | TRUE | 2 | img |
1460 | 46 | 1 | TRUE | 45 | img |
1463 | 2 | 1 | TRUE | 1 | img |
1475 | 7 | 1 | TRUE | 6 | img |
1479-1498-1539 | 8 | 3 | TRUE | 5 | img |
1484 | 4 | 1 | TRUE | 3 | img |
1494 | 2 | 1 | TRUE | 1 | img |
1496 | 2 | 1 | TRUE | 1 | img |
1503 | 10 | 1 | TRUE | 9 | img |
1506 | 2 | 1 | TRUE | 1 | img |
1508-1509 | 1478 | 4 | TRUE | 1474 | img |
1515 | 2 | 1 | TRUE | 1 | img |
1518 | 7 | 1 | TRUE | 6 | img |
1524-1528 | 268 | 2 | TRUE | 266 | img |
1526 | 2 | 1 | TRUE | 1 | img |
1533 | 2 | 1 | TRUE | 1 | img |
1536 | 2 | 1 | TRUE | 1 | img |
1543 | 7 | 1 | TRUE | 6 | img |
1550 | 155 | 1 | TRUE | 154 | img |
1552 | 8 | 1 | TRUE | 7 | img |
1556 | 4 | 1 | TRUE | 3 | img |
1563-1564-1566-1575-1579 | 5148 | 5 | TRUE | 5143 | img |
1567 | 2 | 1 | TRUE | 1 | img |
1569 | 2 | 1 | TRUE | 1 | img |
1570 | 2 | 1 | TRUE | 1 | img |
1571-1572-1576 | 22 | 3 | TRUE | 19 | img |
1573 | 4 | 1 | TRUE | 3 | img |
1581 | 2 | 1 | TRUE | 1 | img |
1582 | 3 | 1 | TRUE | 2 | img |
1583-1584 | 13 | 2 | TRUE | 11 | img |
1585 | 2 | 1 | TRUE | 1 | img |
1592 | 514 | 13 | TRUE | 501 | img |
1594 | 2 | 1 | TRUE | 1 | img |
1595 | 2 | 1 | TRUE | 1 | img |
1597 | 4 | 1 | TRUE | 3 | img |
1598 | 4 | 1 | TRUE | 3 | img |
1602 | 3 | 1 | TRUE | 2 | img |
1605 | 2 | 1 | TRUE | 1 | img |
1606 | 2 | 1 | TRUE | 1 | img |
1614 | 3 | 1 | TRUE | 2 | img |
1615 | 3 | 1 | TRUE | 2 | img |
1616 | 3 | 1 | TRUE | 2 | img |
1617 | 3 | 1 | TRUE | 2 | img |
1622 | 2 | 1 | TRUE | 1 | img |
1623 | 2 | 1 | TRUE | 1 | img |
1624 | 2 | 1 | TRUE | 1 | img |
1625-1652 | 43 | 3 | TRUE | 40 | img |
1630-1759 | 164 | 2 | TRUE | 162 | img |
1633 | 2 | 1 | TRUE | 1 | img |
1634 | 2 | 1 | TRUE | 1 | img |
1635 | 4 | 1 | TRUE | 3 | img |
1636 | 2 | 1 | TRUE | 1 | img |
1637 | 4 | 1 | TRUE | 3 | img |
1641 | 9 | 1 | TRUE | 8 | img |
1645 | 19 | 1 | TRUE | 18 | img |
1647 | 2 | 1 | TRUE | 1 | img |
1649 | 2 | 1 | TRUE | 1 | img |
1653 | 2 | 1 | TRUE | 1 | img |
1657 | 2 | 1 | TRUE | 1 | img |
1658 | 2 | 1 | TRUE | 1 | img |
1663 | 324 | 10 | TRUE | 314 | img |
1673 | 5 | 1 | TRUE | 4 | img |
1674 | 13 | 1 | TRUE | 12 | img |
1676 | 2 | 1 | TRUE | 1 | img |
1679 | 2 | 1 | TRUE | 1 | img |
1692 | 13 | 3 | TRUE | 10 | img |
1693 | 2 | 1 | TRUE | 1 | img |
1694 | 3 | 1 | TRUE | 2 | img |
1696 | 3 | 1 | TRUE | 2 | img |
1701 | 3 | 1 | TRUE | 2 | img |
1702 | 2 | 1 | TRUE | 1 | img |
1703 | 3 | 1 | TRUE | 2 | img |
1706 | 3 | 1 | TRUE | 2 | img |
1710 | 2 | 1 | TRUE | 1 | img |
1717 | 2 | 1 | TRUE | 1 | img |
1718 | 2 | 1 | TRUE | 1 | img |
1723 | 2 | 1 | TRUE | 1 | img |
1726 | 2 | 1 | TRUE | 1 | img |
1729 | 2 | 1 | TRUE | 1 | img |
1731 | 2 | 1 | TRUE | 1 | img |
1736 | 3 | 1 | TRUE | 2 | img |
1737 | 2 | 1 | TRUE | 1 | img |
1749 | 11 | 2 | TRUE | 9 | img |
1750-1751-1752 | 3210 | 3 | TRUE | 3207 | img |
1755 | 2 | 1 | TRUE | 1 | img |
1757 | 2 | 1 | TRUE | 1 | img |
1758 | 2 | 1 | TRUE | 1 | img |
1772 | 3 | 1 | TRUE | 2 | img |
1774 | 3 | 1 | TRUE | 2 | img |
1777 | 3 | 1 | TRUE | 2 | img |
Are there any isomorphic nodes between the computed stub components of the graph? F
stands for false, T
for true and X
marks the “border” of the table (the relation is symmetric).
1-8-etc | 70-1629-etc | |
---|---|---|
1-8-etc | X | F |
70-1629-etc | X |
The number of the unitals found on different levels of our breadth first search. The incomplete components are denoted by red.
id | v0 | v1 | v2 | v3 | v4 | v5 | v6 | v7 | v8 | v9 | v10 | v11 | v12 | v13 | v14 | v15 | v16 | v17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1-8-etc | 8 | 45 | 425 | 7118 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6-50 | 2 | 9 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7-61 | 2 | 5 | 7 | 5 | 11 | 22 | 26 | 21 | 20 | 17 | 14 | 9 | 1 | 0 | 0 | 0 | 0 | 0 |
9-26 | 2 | 14 | 13 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22-58-62 | 3 | 13 | 20 | 25 | 23 | 33 | 59 | 92 | 136 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 1 | 4 | 5 | 6 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
24 | 1 | 11 | 20 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
27 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
28 | 1 | 4 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
34-57 | 2 | 6 | 16 | 24 | 30 | 38 | 39 | 34 | 41 | 33 | 22 | 9 | 21 | 39 | 36 | 11 | 0 | 0 |
40 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
41 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
42 | 1 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
43 | 1 | 12 | 21 | 14 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
44 | 1 | 4 | 6 | 10 | 8 | 20 | 19 | 16 | 18 | 31 | 23 | 2 | 2 | 1 | 1 | 0 | 0 | 0 |
45 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
47 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
48 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
49 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
52 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
53 | 1 | 3 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
54 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
56 | 1 | 5 | 10 | 14 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
59 | 1 | 5 | 13 | 21 | 32 | 57 | 50 | 32 | 11 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
60 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
63 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
64 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
66 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
67 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
69 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
70-1629-etc | 6 | 28 | 445 | 3008 | 9400 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
341 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1420-1421-etc | 18 | 57 | 102 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1424-1429-etc | 22 | 112 | 305 | 650 | 100 | 104 | 49 | 23 | 20 | 14 | 10 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
1425-1426-etc | 22 | 91 | 276 | 597 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1427-1476 | 2 | 3 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1428 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1430-1489-1530 | 3 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1434-1435-etc | 16 | 68 | 172 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1437-1439-1546-1548 | 4 | 5 | 4 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1444-1446-etc | 10 | 32 | 111 | 268 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1445 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1447 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1450 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1451-1461-1471 | 3 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1456 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1459 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1460 | 1 | 5 | 11 | 15 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1463 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1475 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1479-1498-1539 | 3 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1484 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1494 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1496 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1503 | 1 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1506 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1508-1509 | 2 | 34 | 335 | 890 | 101 | 39 | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1515 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1518 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1524-1528 | 2 | 33 | 233 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1526 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1533 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1536 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1543 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1550 | 1 | 2 | 6 | 36 | 70 | 35 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1552 | 1 | 2 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1556 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1563-1564-1566-1575-1579 | 5 | 35 | 137 | 329 | 800 | 1311 | 1418 | 798 | 294 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1567 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1569 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1570 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1571-1572-1576 | 3 | 4 | 7 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1573 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1581 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1582 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1583-1584 | 2 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1585 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1592 | 1 | 3 | 3 | 7 | 23 | 51 | 46 | 41 | 36 | 34 | 48 | 69 | 51 | 27 | 38 | 22 | 12 | 2 |
1594 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1595 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1597 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1598 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1602 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1605 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1606 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1614 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1615 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1616 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1617 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1622 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1623 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1624 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1625-1652 | 2 | 4 | 9 | 9 | 11 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1630-1759 | 2 | 7 | 30 | 49 | 50 | 18 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1633 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1634 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1635 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1636 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1637 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1641 | 1 | 2 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1645 | 1 | 1 | 2 | 5 | 5 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1647 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1649 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1653 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1657 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1658 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1663 | 1 | 4 | 9 | 7 | 25 | 49 | 18 | 24 | 41 | 14 | 17 | 25 | 23 | 8 | 22 | 24 | 13 | 0 |
1673 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1674 | 1 | 4 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1676 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1679 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1692 | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1693 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1694 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1696 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1701 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1702 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1703 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1706 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1710 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1717 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1718 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1723 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1726 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1729 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1731 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1736 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1737 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1749 | 1 | 4 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1750-1751-1752 | 3 | 8 | 40 | 168 | 518 | 880 | 940 | 516 | 135 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1755 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1757 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1758 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1772 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1774 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1777 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |