Goto Chapter: Top 1 2
 [Top of Book]  [Contents]   [Previous Chapter] 

2 Examples
 2.1 Computing paramodifications
 2.2 Para-rigidity of cyclic unitals

2 Examples

2.1 Computing paramodifications

gap> LoadPackage( "UnitalSZ", false );
gap> LoadPackage( "grape", false );
gap> u:=KNPAbstractUnital(1577);
KNPAbstractUnital(1577)
gap> AutomorphismGroup(u);
<permutation group with 6 generators>
gap> b:=BlocksOfUnital(u)[1];
[ 1, 2, 5, 6, 14 ]
gap> bls0:=Filtered(BlocksOfUnital(u),x->Size(Intersection(x,b))=1);;
gap> bls:=List(bls0,x->Difference(x,b));;
gap> cols:=AllRegularBlockColorings(bls,5,Group(())); time;
[ Transformation( [ 1, 1, 1, 4, 2, 5, 3, 5, 3, 4, 2, 2, 5, 3, 4, 4, 3, 2, 5, 5, 3, 4, 4, 5, 3, 2, 2, 1, 1, 1, 5, 3, 2, 4, 5, 2, 5,
     4, 3, 2, 2, 3, 2, 5, 3, 4, 1, 1, 1, 4, 2, 4, 4, 5, 2, 3, 2, 5, 3, 1, 1, 1, 3, 3, 2, 5, 3, 5, 4, 4, 4, 5, 1, 1, 1 ] ), 
  Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 3, 4, 2, 4, 2, 3, 3, 2, 4, 2, 5, 5, 5, 5, 3, 2, 2, 4, 5, 2,
     5, 3, 5, 3, 2, 2, 3, 5, 3, 4, 4, 4, 4, 3, 5, 3, 5, 4, 4, 5, 3, 5, 2, 2, 2, 5, 2, 4, 2, 4, 5, 5, 4, 2, 4, 3, 3, 3 ] ), 
  Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 5, 5, 5, 3, 3, 3, 5, 3, 3, 5, 4, 5, 3, 2, 2, 5, 3, 2,
     5, 2, 4, 2, 5, 5, 4, 4, 4, 4, 2, 5, 5, 3, 3, 2, 3, 2, 2, 5, 2, 5, 5, 3, 2, 3, 2, 4, 3, 4, 4, 4, 2, 3, 2, 4, 2, 3 ] ), 
  Transformation( [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 3, 2, 5, 3, 2, 5,
     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ] ), 
  Transformation( [ 1, 2, 5, 5, 5, 5, 5, 2, 1, 2, 2, 1, 1, 2, 1, 4, 4, 4, 4, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 4, 5, 3, 2, 1, 3, 5, 1,
     5, 1, 4, 1, 5, 5, 4, 4, 4, 4, 1, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 2, 4, 5, 4, 4, 4, 2, 5, 2, 4, 2, 5 ] ), 
  Transformation( [ 1, 3, 4, 4, 4, 4, 4, 3, 1, 3, 3, 1, 1, 3, 1, 4, 4, 4, 4, 5, 5, 5, 1, 1, 1, 5, 1, 1, 5, 4, 5, 3, 2, 1, 5, 2, 1,
     5, 1, 3, 1, 5, 5, 3, 3, 3, 3, 1, 5, 5, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 3, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ] ), 
  Transformation( [ 1, 2, 4, 4, 4, 4, 4, 2, 1, 2, 2, 1, 1, 2, 1, 4, 4, 4, 4, 2, 2, 2, 3, 3, 3, 2, 3, 3, 2, 4, 5, 3, 2, 5, 1, 3, 5,
     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 3, 3, 4, 3, 4, 4, 1, 4, 1, 1, 3, 4, 3, 2, 1, 3, 1, 1, 1, 2, 3, 2, 1, 2, 3 ] ), 
  Transformation( [ 1, 3, 5, 5, 5, 5, 5, 3, 1, 3, 3, 1, 1, 3, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 3, 2, 2, 1, 5, 2,
     5, 2, 3, 2, 5, 5, 3, 3, 3, 3, 2, 5, 1, 3, 3, 2, 3, 2, 2, 1, 2, 1, 1, 3, 2, 5, 2, 1, 5, 1, 1, 1, 2, 5, 2, 1, 2, 5 ] ), 
  Transformation( [ 1, 5, 2, 1, 5, 1, 5, 2, 2, 2, 1, 2, 5, 1, 5, 4, 1, 1, 4, 1, 4, 1, 3, 3, 3, 4, 3, 3, 5, 2, 5, 3, 2, 2, 4, 3, 2,
     5, 5, 2, 5, 1, 1, 1, 2, 1, 4, 4, 4, 4, 3, 3, 5, 3, 4, 4, 5, 5, 5, 1, 3, 2, 3, 2, 4, 3, 4, 2, 2, 4, 3, 4, 1, 5, 3 ] ), 
  Transformation( [ 1, 4, 3, 1, 4, 1, 4, 3, 3, 3, 1, 3, 4, 1, 4, 4, 1, 1, 4, 1, 3, 1, 3, 3, 4, 3, 4, 5, 5, 5, 5, 3, 2, 2, 3, 5, 2,
     5, 2, 5, 2, 1, 1, 1, 5, 1, 4, 2, 3, 3, 3, 5, 2, 5, 2, 2, 5, 2, 5, 1, 4, 2, 5, 2, 4, 4, 4, 5, 5, 2, 4, 2, 1, 2, 3 ] ), 
  Transformation( [ 1, 4, 2, 1, 4, 1, 4, 2, 2, 2, 1, 2, 4, 1, 4, 4, 3, 3, 4, 5, 5, 5, 3, 3, 4, 5, 4, 1, 5, 2, 5, 3, 2, 2, 5, 1, 2,
     5, 3, 2, 3, 5, 5, 3, 2, 3, 4, 1, 5, 5, 3, 1, 3, 1, 1, 1, 5, 3, 5, 5, 4, 2, 1, 2, 4, 4, 4, 2, 2, 1, 4, 1, 3, 3, 3 ] ), 
  Transformation( [ 1, 5, 3, 1, 5, 1, 5, 3, 3, 3, 1, 3, 5, 1, 5, 4, 4, 4, 4, 2, 3, 2, 3, 3, 2, 3, 2, 1, 5, 4, 5, 3, 2, 2, 3, 1, 2,
     5, 5, 4, 5, 2, 2, 4, 4, 4, 4, 1, 3, 3, 3, 1, 5, 1, 1, 1, 5, 5, 5, 2, 2, 2, 1, 2, 4, 2, 4, 4, 4, 1, 2, 1, 4, 5, 3 ] ) ]
342
gap> List(cols,c->ParamodificationOfUnitalNC(u,b,c)); time;
[ AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, 
  AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4> ]
32
gap> List(cols,c->ParamodificationOfUnital(u,b,c)); time;
[ AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, 
  AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4> ]
88
gap> ParamodificationsOfUnitalWithBlock(u,b); time;
[ AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4> ]
219
gap> AllParamodificationsOfUnital(u); time;
[ AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, 
  AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4>, AU_UnitalDesign<4> ]
961

2.2 Para-rigidity of cyclic unitals

We say that a unital is para-rigid, if all block colorings of \(C(b)\) are equivalent with the trivial one. The following example shows that the cyclic unitals of order 4 and 6 by Bagchi and Bagchi are para-rigid.

gap> SetInfoLevel(InfoParamod,2);
gap> u:=BagchiBagchiCyclicUnital(4);
BagchiBagchiCyclicUnital(4)
gap> AllParamodificationsOfUnital(u);
#I  2 block representatives for the unital computed...
#I  1 coloring(s) for the given unital-block pair computed...
#I  1 coloring(s) for the given unital-block pair computed...
[  ]
gap> u:=BagchiBagchiCyclicUnital(6);
BagchiBagchiCyclicUnital(6)
gap> AllParamodificationsOfUnital(u);
#I  2 block representatives for the unital computed...
#I  1 coloring(s) for the given unital-block pair computed...
#I  1 coloring(s) for the given unital-block pair computed...
[  ]
 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2

generated by GAPDoc2HTML